7,862 research outputs found

    The Structure of the Proton in the LHC Precision Era

    Get PDF
    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.Comment: 170 pages, 85 figures, version to be published in Physics Report

    Topological entropy of continuous self–maps on a graph

    Get PDF
    Let G be a graph and f be a continuous self–map on G. We provide sufficient conditions based on the Lefschetz zeta function in order that f has positive topological entropy. Moreover, for the particular graphs: p–flower graph, n-lips graph and (p+r1L1+:::+rsLs)–graph we are able to go further and state more precise conditions for having positive topological entropy.The second author is partially supported by the Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación grants MTM-2016-77278-P (FEDER) and MDM-2014-0445, the Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911

    Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols

    Full text link
    Cryptanalysis is an important branch in the study of cryptography, including both the classical cryptography and the quantum one. In this paper we analyze the security of two three-party quantum key distribution protocols (QKDPs) proposed recently, and point out that they are susceptible to a simple and effective attack, i.e. the dense-coding attack. It is shown that the eavesdropper Eve can totally obtain the session key by sending entangled qubits as the fake signal to Alice and performing collective measurements after Alice's encoding. The attack process is just like a dense-coding communication between Eve and Alice, where a special measurement basis is employed. Furthermore, this attack does not introduce any errors to the transmitted information and consequently will not be discovered by Alice and Bob. The attack strategy is described in detail and a proof for its correctness is given. At last, the root of this insecurity and a possible way to improve these protocols are discussed.Comment: 6 pages, 3 figure

    Anisotropic Magneto-conductance of InAs Nanowire: Angle Dependent Suppression of 1D Weak Localization

    Full text link
    The magneto-conductance of an InAs nanowire is investigated with respect to the relative orientation between external magnetic field and the nanowire axis. It is found that both the perpendicular and the parallel magnetic fields induce a positive magneto-conductance. Yet the parallel magnetic field induced longitudinal magneto-conductance has a smaller magnitude. This anisotropic magneto-transport phenomenon is studied as a function of temperature, magnetic field strength and at an arbitrary angle between the magnetic field and the nanowire. We show that the observed effect is in quantitative agreement with the suppression of one-dimensional (1D) weak localization
    • …
    corecore